A Deep Learning Approach to Network Intrusion Detection Using Deep Autoencoder

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Learning Approach for Network Intrusion Detection System

A Network Intrusion Detection System (NIDS) helps system administrators to detect network security breaches in their organization. However, many challenges arise while developing a flexible and effective NIDS for unforeseen and unpredictable attacks. In this work, we propose a deep learning based approach to implement such an effective and flexible NIDS. We use Self-taught Learning (STL), a dee...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Detection of Pitting in Gears Using a Deep Sparse Autoencoder

In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised ma...

متن کامل

Deep Learning Autoencoder Approach for Handwritten Arabic Digits Recognition

This paper presents a new unsupervised learning approach with stacked autoencoder (SAE) for Arabic handwritten digits categorization. Recently, Arabic handwritten digits recognition has been an important area due to its applications in several fields. This work is focusing on the recognition part of handwritten Arabic digits recognition that face several challenges, including the unlimited vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revue d'Intelligence Artificielle

سال: 2020

ISSN: 0992-499X,1958-5748

DOI: 10.18280/ria.340410